Genomic selection of in vitro produced and somatic cell nuclear transfer embryos for rapid genetic improvement in cattle production Kadarmideen,

نویسندگان

  • Haja Mazzoni
  • Gianluca Watanabe
  • H. N. Kadarmideen
  • G. Mazzoni
  • Y. F. Watanabe
  • L. Strøbech
  • P. S. Baruselli
  • F. V. Meirelles
  • H. Callesen
  • P. Hyttel
  • J.B.S. Ferraz
  • M.F.G. Nogueira
چکیده

This paper provides basic concepts of genomic selection (GS) methods in beef and dairy cattle production in combination with assisted reproductive technologies (ART) such as ovum-pick up and in vitro production (OPU-IVP). We first introduce genomic tools and discuss main methods of GS as practiced todate. The general benefit from GS is that it enables selecting animals accurately early in life using genomic predictions particularly those phenotypes that are very difficult or expensive to measure. While it is known that GS increases genetic gain and profit in conventional cattle breeding, GS is much more desirable when combined with OPU-IVP in cattle production. The expected benefits of GS-OPU-IVP far exceed the benefits achieved by either GS or OPU-IVP alone mainly due to tremendous reduction in generation interval. The genetic improvement will increase even further, if genetic merit of donor cows and bulls used in OPU-IVP for key economic traits are maximal. The paper also highlights some challenges particularly with regard to embryo biopsies and quantity and quality of embryo DNA for whole genome genotyping and ways to overcome difficulties. We briefly discuss the somatic cell nuclear transfer (SCNT) technique in the context of applying GS on fibroblast cell lines from fetuses obtained from OPU-IVP techniques and provide our perspectives on how it might pave way for even more rapid cattle improvement. Main conclusion is that employing genomic selection in ARTs such as OPUIVP of embryos coupled with embryo sexing and SCNT will lead to rapid dissemination of high genetic merit animals on a scale never been seen before. Finally, the paper outlines current research activities on combined genomic selection and advanced reproductive technologies in the GIFT project consortium (www.gift.ku.dk).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative stepwise pattern of reactive oxygen species production during in vitro development of fertilized and nuclear transferred goat embryos

Objective A unique feature of embryo metabolism is production of reactive oxygen species (ROS). It is well established that during in vitro culture, ROS levels increase over normal ranges observed for embryos developed in vivo. This study evaluates and compares the stepwise pattern of ROS production during in vitro development of reconstructed goat embryos produced by zona-free method of somati...

متن کامل

P-115: Melatonin Increases Developmental Rate of In Vitro Mouse Somatic Cell Nuclear

Background: The beneficial effect of supplementing culture medium with melatonin has been reported during in vitro embryo development of species such as mouse, bovine and porcine. However, the effect of melatonin on the mouse somatic cell nuclear transfer remained unknown. Materials and Methods: In this study, we assessed the effects of various concentrations of melatonin (10-6 to 10-12 M) on t...

متن کامل

Genetic and Economic Aspects of Applying Embryo Transfer in Traditional and Genomic Evaluation in Iranian Holstein Dairy Cattle

Embryo transfer (ET) in Holstein dairy cattle became an important commercial enterprise after the introduction of non-surgical recovery technique. Embryo transfer could increase the reproductive rate of genetically superior cows. The objectives of the present study were to evaluate the use of ET in Iranian Holstein dairy cattle to increase selection intensity on the dam side, economically; esti...

متن کامل

O-18: Epigenetic Modification of Cloned Embryo Development; State of ART

Background: At the outset of the somatic cell nuclear transfer (SCNT) process, the chromatin structure of the somatic cell which governs its state of differentiation undergoes dramatic changes, called reprogramming, and is compelled back to the embryonic stage. However, the overall epigenetic makeup of the resultant cloned embryos has been acknowledged far different from the fertilized embryos....

متن کامل

P-86: Production of Cloned Mice by Somaticm Cell Nuclear Transfer

Background: For several years, mammalian cloning by splitting an early embryo or nuclear transfer into oocytes method has been successfully performed. Cloning is now also possible using adult somatic cells. Although it has now been 15 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), the success rate for producing live offspring by cloning is lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018